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Background: Suspected non-Alzheimer disease pathophysiology (SNAP) refers to the
subjects who feature negative β-amyloid (Aβ) but positive tau or neurodegeneration
biomarkers. It accounts for a quarter of the elderly population and is associated with
cognitive decline. However, the underlying pathophysiology is still unclear.

Methods: We included 111 non-demented subjects, then classified them into three
groups using cerebrospinal fluid (CSF) Aβ 1–42 (A), phosphorylated tau 181 (T), and
total tau (N). Specifically, we identified the normal control (NC; subjects with normal
biomarkers, A-T-N-), SNAP (subjects with normal amyloid but abnormal tau, A−T+),
and predementia Alzheimer’s disease (AD; subjects with abnormal amyloid and tau,
A+T+). Then, we used the static amplitude of low-frequency fluctuation (sALFF) and
dynamic ALFF (dALFF) variance to reflect the intrinsic functional network strength and
stability, respectively. Further, we performed a correlation analysis to explore the possible
relationship between intrinsic brain activity changes and cognition.

Results: SNAP showed decreased sALFF in left superior frontal gyrus (SFG) while
increased sALFF in left insula as compared to NC. Regarding the dynamic metric,
SNAP showed a similarly decreased dALFF in the left SFG and left paracentral lobule
as compared to NC. By contrast, when compared to NC, predementia AD showed
decreased sALFF in left inferior parietal gyrus (IPG) and right precuneus, while increased
sALFF in the left insula, with more widely distributed decreased dALFF variance across
the frontal, parietal and occipital lobe. When directly compared to SNAP, predementia
AD showed decreased sALFF in left middle occipital gyrus and IPG, while showing
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decreased dALFF variance in the left temporal pole. Further correlation analysis showed
that increased sALFF in the insula had a negative correlation with the general cognition in
the SNAP group. Besides, sALFF and dALFF variance in the right precuneus negatively
correlated with attention in the predementia AD group.

Conclusion: SNAP and predementia AD show distinct functional impairment patterns.
Specifically, SNAP has functional impairments that are confined to the frontal region,
which is usually spared in early-stage AD, while predementia AD exhibits widely
distributed functional damage involving the frontal, parietal and occipital cortex.

Keywords: suspected non-Alzheimer disease pathophysiology, Alzheimer’s disease, amplitude of low-frequency
fluctuation, dynamic brain activity, resting-state fMRI

INTRODUCTION

Suspected non-Alzheimer disease pathophysiology (SNAP)
refers to the subjects with abnormal tau or neurodegeneration
but normal amyloid deposition (Jack et al., 2018). Previous
studies have usually focused on Alzheimer’s continuum
and ignored these subjects due to the lack of Alzheimer’s
disease (AD) core biomarker β-amyloid (Aβ). However, recent
epidemiological investigations claimed that SNAP accounts
for about a quarter in cognitively normal (CN) and mild
cognitive impairment (MCI) population (Jack et al., 2012, 2016;
Schreiber et al., 2017). Furthermore, longitudinal studies found
a greater cognitive decline in SNAP patients than in subjects
with normal biomarkers (Caroli et al., 2015; Vos et al., 2015;
Chung et al., 2017; Jack et al., 2017; Ben Bouallègue et al., 2018).
Thus, understanding the underlying pathophysiology of SNAP
is necessary.

Previous studies reported that tau deposition in SNAP
is located in the bilateral medial and lateral temporal
region (Dodich et al., 2020), as well as hypometabolism in
temporoparietal regions (Schreiber et al., 2017; Chiaravalloti
et al., 2019). This is somehow in line with the magnetic
resonance imaging (MRI) findings, which found more severe
baseline hippocampal atrophy in SNAP than normal control
(NC; Caroli et al., 2015; Burnham et al., 2016; Gordon et al.,
2016; Chung et al., 2017). Though the above study gave us some
insight into the foundation of the cognitive decline of SNAP, the
functional impairment pattern of SNAP is still unknown.

Amplitude of low-frequency fluctuation (ALFF) is an effective
neuroimaging index in reflecting neurodegenerative changes
caused by different pathologies. To be specific, the static ALFF
(sALFF) reflects the regional intrinsic functional activity strength
by calculating the average ALFF signal through the whole resting-
state period (Yang et al., 2007). Decreased sALFF associates
with impaired brain activity, while increased sALFF is usually
regarded as a compensatory mechanism to cognitive impairment
in neurodegenerative diseases (Palacios et al., 2013; Liu et al.,
2016; Yang et al., 2018). On the other hand, the dynamic
ALFF (dALFF) could reflect the temporal variability of intrinsic
brain activity (Fu et al., 2018). Abnormalities in dynamic brain
activity, including excessive variability (increased dALFF) and
excessive stability (decreased dALFF), impair brain function
(Christoff et al., 2016). These methods have been widely used in

neurodegenerative diseases, like AD (Yang et al., 2018; de Vos
et al., 2018; Li et al., 2019; Zeng et al., 2019), Parkinson’s disease
(Skidmore et al., 2013; Zhang et al., 2019) have been proven
feasible and effective. Thus, combining the sALFF and dALFF
may help to illuminate the underlying brain functional changes
in SNAP.

In our study, we aim to explore the brain functional changes
in SNAP by combining the sALFF and dALFF. Notably, to
compare the differences in functional impairment patterns, we
included the predementia AD group (A+T+) as a reference.
According to previous findings (Caroli et al., 2015; Jack et al.,
2016; Altomare et al., 2019; Lowe et al., 2019) that SNAP had a
relatively distinct pathological background and clinical trajectory
from AD, we hypothesized that SNAP might display different
functional changes relative to AD.

MATERIALS AND METHODS

Alzheimer’s Disease Neuroimaging and
Initiative
All data used in this article were downloaded from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The ADNI is a longitudinal multicenter study since 2004 and
now contains ADNI 1, ADNI GO, ADNI 2, and ADNI 3. By
the use of clinical, neuropsychological assessment, gene, biofluid,
and imaging data, it aims to investigate the biomarkers of early
detection and progression of AD.

Study Participants
All individuals in this study signed the written informed
consent as they joined the ADNI project. We identified 111
non-demented subjects (characterized as either CN or MCI)
from the ADNI GO/2database (the flowchart was presented in
Supplementary Material 1; Table 1). We included the CN and
MCI since SNAP is much more prevalent in the non-demented
population than in the dementia population (Dani et al., 2017;
Yu et al., 2019). All these subjects had undergone structural
MRI, resting-state functional MRI (rsfMRI), lumbar puncture,
and comprehensive neuropsychological assessments.

Cognitively normal was defined as: (1) Clinical Dementia
Rating (CDR) = 0; (2) Mini-Mental State Exam (MMSE)

1http://adni.loni.usc.edu/
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TABLE 1 | Demographic and clinical characteristics.

NC (A-T-N-) SNAP (A-T+) Predementia AD (A+T+) F(χ2) P-value

Demographics
Number 17 29 65 − −

Female 13 (76.47%) 13 (44.83%) 31 (47.69%) 5.14 0.08
Age (years) 71.89 ± 6.03 73.92 ± 8.60 74.10 ± 6.67 0.66 0.52
APOEε4 2 (11.76%) 6 (20.69%) 40 (61.54%) 21.74 <0.001
Education (years) 15.88 ± 3.28 16.55 ± 2.43 16.25 ± 2.46 0.37 0.70
MCI 10 (58.82%) 15 (51.72%) 40 (61.54%) 0.39 0.68
GDS 1.24 ± 1.60 0.93 ± 0.92 1.14 ± 1.17 0.44 0.65
General mental status
MMSE 28.35 ± 1.54 28.59 ± 1.50 27.82 ± 2.07 1.90 0.15
CDR global 0.26 ± 0.26 0.26 ± 0.25 0.35 ± 0.30 1.44 0.24
Memory
WMS-LM immediate 12.00 ± 4.34 12.00 ± 3.28 10.58 ± 4.61 1.34 0.27
WMS-LM delayed 10.19 ± 4.20 10.28 ± 4.31 8.37 ± 4.77 2.02 0.14
AVLT sum of trials 1–5 41.00 ± 11.96 42.24 ± 10.65 36.68 ± 10.75 3.02 0.05
AVLT recognition 11.65 ± 3.06 12.17 ± 2.70 11.31 ± 3.01 0.86 0.43
Visuo-spatial function
CDT 4.71 ± 0.59 4.48 ± 0.74 4.51 ± 0.85 0.50 0.61
Language
BNT 27.82 ± 2.04 28.31 ± 1.69 27.43 ± 3.52 0.90 0.41
Category Fluency Test 18.88 ± 4.85 21.52 ± 5.88 19.49 ± 5.22 1.82 0.17
Attention
Log-transformed TMT-A 3.55 ± 0.28 3.47 ± 0.33 3.56 ± 0.30 1.02 0.36
Executive function
Log-transformed TMT-B 4.38 ± 0.33 4.38 ± 0.43 4.50 ± 0.45 1.00 0.37
CSF Biomarkers
Aβ1–42 (pg/ml) 229.00 ± 31.96c 244.52 ± 29.01c 141.26 ± 23.96ab 182.31 <0.001
P-tau181 (pg/ml) 17.48 ± 3.93bc 34.55 ± 9.92ac 53.28 ± 24.52ab 26.06 <0.001
T-tau (pg/ml) 47.24 ± 15.87c 64.72 ± 23.32c 102.67 ± 49.77ab 16.84 <0.001

Data are presented as mean (SD) or number (%). Abbreviations: SD, standard deviation; NC, normal control; SNAP, suspected non-Alzheimer’s pathophysiology; AD, Alzheimer’s
disease; GDS, Geriatric Depression Scale; MMSE, Mini-Mental State Examination; CDR: Clinical Dementia Rating; WMS-LM, Wechsler Memory Scale Logical Memory; AVLT, Auditory
Verbal Learning Test; CDT, Clock Drawing Test; BNT, Boston Naming Test; TMT, Trail-Making Test. aSignificantly different compared to A-T-N-; bsignificantly different compared to
A−T+; csignificantly different compared to A+T+.

score between 24 and 30 (inclusive); (3) Normal Wechsler
Memory Scale Logical Memory (WMS-LM) delay recall
performance (in detail: ≥9 for subjects with 16 or more years
of education; ≥5 for subjects with 8–15 years of education;
and ≥3 for 0–7 years of education); (4) Without memory
complaints; (5) No impairment in cognitive functions or
activities of daily living. MCI was defined as (1) CDR = 0.5;
(2) MMSE score between 24 and 30 (inclusive); (3) Abnormal
WMS-LM delay recall performance documented by scoring
within the education adjusted ranges; (4) Subjective memory
concern reported by the subject itself, study partners
or clinician; and (5) Preserved general cognition and
functional performance so that a diagnosis of AD dementia
cannot be made.

We excluded individuals with following manifestations:
(1) Significant medical, neurologic, and psychiatric illness, such
as Parkinson’s disease, major depression, clinically significant
abnormalities in vitamin B12; (2) Obvious head trauma history;
(3) Use of non-AD related medication known to influence
cerebral function; and (4) Alcohol or drug abuse (more details
about the inclusion and exclusion criteria were presented in
Supplementary Material 2).

Neuropsychological Assessments
All subjects completed the comprehensive cognitive assessment
(Table 1), including general mental status assessed by

MMSE and CDR global, memory assessed by Auditory
Verbal Learning Test (AVLT) and WMS-LM, attention
assessed by Trail-Making Test Part A (TMT-A), executive
function assessed by Trail-Making Test Part B (TMT-B),
visuospatial function assessed by Clock-Drawing Test (CDT),
and language assessed by Boston Naming Test (BNT) and
Category Fluency Test.

Group Classifications
Cerebrospinal fluid (CSF) β-amyloid 1–42 (Aβ1–42),
phosphorylated tau at position 181 (P-tau181), and total
tau (T-tau) are core AD biomarkers (Jack et al., 2018). The
non-dementia stages enable early prevention and intervention.
Thus, we classified people based on the CSF biomarkers of AD
to explore the imaging characteristics in the non-dementia stage.

According to the 2018 National Institute on Aging-
Alzheimer’s Association (NIA-AA) research framework (Jack
et al., 2018), we use CSF Aβ1–42, T-tau, and P-tau181 level as
the classification criteria. The CSF samples were measured by
the multiplex xMAP Luminex platform as previously described
(Olsson et al., 2005; Shaw et al., 2009). We set the CSF cutoff
point at 192 pg/ml for Aβ1–42, 23 pg/ml for P-tau181, and
93 pg/ml for T-tau (Shaw et al., 2009). Decreased CSF Aβ1–42
and elevated CSF P-tau181or T-tau levels were regarded as
abnormalities. Then, we divided 111 non-demented subjects into
three groups: NC: subjects with normal Aβ1–42 and P-tau181 and
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T-tau (A-T-N-, n = 17), SNAP: subjects with normal Aβ1–42 and
abnormal P-tau181 (A-T+, n = 29), predementia AD: subjects
with abnormal Aβ1–42 and P-tau181 (A+T+, n = 65). Due to
the limited number of A+T-, we did not include this group for
analysis (the flowchart in Supplementary Material 1).

MRI Acquisition
The T1 structure images were obtained using Three-dimensional
Magnetization Prepared Rapid Acquisition Gradient Echo (3D
MPRAGE) T1-weighted sequence with the following parameters:
voxel size = 1.0 × 1.0 × 1.2 mm3; flip angle = 9◦; echo time
(TE) = 3.13 ms; repetition time (TR) = 6.77 ms; 170 sagittal
slices; within plane FOV = 256 × 256 mm2. The rsfMRI
images were obtained using an echo-planar imaging sequence
with the following parameters: 140 time points; TE = 30 ms;
TR = 3,000 ms; number of slices = 48; slice thickness = 3.3 mm;
spatial resolution = 3.31 × 3.31 × 3.31 mm3; flip angle = 80◦;
matrix = 64 × 64. All subjects undergo MRI scanning with their
eyes open, focusing on a cross, and kept at rest calmly according
to the ADNI scanning protocol.

MRI Pre-processing
The rsfMRI data were preprocessed using the Data Processing
Assistant for Resting-state fMRI (DPARSF2, Chao-Gan and Yu-
Feng, 2010) based on the platform of Statistical Parametric
Mapping 12 (SPM12)3. First, the first 10 volumes of rsfMRI scans
were removed due to the signal equilibrium and the subject’s
adaptation to the scanning noise. The remaining 130 images
were corrected for both timing differences between each slice
and head motion (Friston 24-parameter model (Friston et al.,
1996). Next, image data with head motion displacement of not
more than 2.5 mm in any of the x, y, or z directions or 2.5◦

rotation of angular motion were chosen for further analysis
(one SNAP and one predementia AD subject was excluded).
Then, T1-weighted images and the mean rsfMRI images were
co-registered, spatially normalized to the Montreal Neurological
Institute (MNI) standard space, and subsequently re-sampled
into 3 mm × 3 mm × 3 mm cubic voxel. Nuisance covariates,
including 24 head motion parameters and signals of white matter
and CSF, were corrected. Finally, rsfMRI images were detrended
and spatially smoothed with a Gaussian kernel of 6 × 6 × 6 mm3

full width at half maximum (FWHM).

sALFF and dALFF Variance Calculation
The sALFF was computed using the DPARSF toolbox to reflect
the strength of intrinsic brain activity. The procedure was as
follows: the time series of each voxel was changed into the
frequency domain with a fast Fourier transform. Next, across the
0.01–0.08 Hz domain, the square root of the power spectrum in
each voxel was computed and averaged. This averaged square
root was taken as the sALFF of each voxel (Zang et al., 2007).
Finally, to standardize the result, the sALFF of each voxel was
divided by the global mean sALFF value within the default brain
mask from the DPARSF.

2http://rfmri.org/DPARSF
3www.fil.ion.ucl.ac.uk/spm

The dALFF was computed in the DynamicBC toolbox4 (Liao
et al., 2014) by using a sliding window approach to reflect
the dynamic change of intrinsic brain activity. According to
previous studies which proved that window sizes in the range
of 40 s to 100 s could capture brain dynamics well (Zalesky and
Breakspear, 2015), we chose 14TR (42 s) as the window size, and
1TR as the window step. Then, we got an ALFF map for each
sliding window, as well as the dALFF variance that reflects the
temporal stability of intrinsic brain activity. To test the reliability
of the results under different window sizes, we also analyzed
dALFF in other window sizes, and details were presented in
Supplementary Material 3.

Statistical Analysis
Demographic data were analyzed in SPSS (version 23.0) by
using Chi-squared (χ2) test for categorical data (gender,
APOE4 genotyping) and analysis of variance (ANOVA) for
continuous data (age, education years, neuropsychological
scores, and CSF biomarkers). Then, post hoc analysis using
two-sample t-tests was further performed to reveal the source of
ANOVA difference (P < 0.05, corrected by Bonferroni).

We adopted a voxel-wise two-sample t-test in the DPABI
toolbox (Yan et al., 2016) to explore the neuroimaging metric
differences (including sALFF, dALFF variance) between SNAP
and NC, predementia AD and NC, as well as predementia AD
and SNAP, with gray matter volume and age as covariates. We
set the threshold at 0.01 for voxel P-value, 0.05 for cluster P-value
using the Gaussian random field (GRF) correction.

We defined regions with significantly changed sALFF and
dALFF variance as the regions of interest (ROIs) and extracted
each subjects’ values of sALFF and dALFF within ROIs. Then,
we performed partial correlation analyses between the sALFF
or dALFF of ROIs and neurophysiological or pathological data
after controlling for age. In detail, pathological data included CSF
Aβ1–42, T-tau, and P-tau181. Neurophysiological data included
general mental status (MMSE, CDR global), memory (AVLT,
WMS-LM), attention (TMT-A), executive function (TMT-B),
visuospatial function (CDT), and language (BNT, Category
Fluency Test). To reduce the effects of multiple comparisons, we
chose P < 0.01 as the statistical significance level.

RESULTS

Demographics, Cognitive and CSF Data
We presented the demographics, CSF biomarkers levels, and
neuropsychological scores in Table 1. There is no significant
statistical difference in age, gender, education, clinical diagnosis,
and geriatric depression scale (GDS) among three groups
(P > 0.05). The proportion of APOEε4 carriers was significantly
lower in SNAP (20.7%) and NC (11.8%) than that in the
predementia AD group (61.5%, P < 0.001).

As for cognitive data, three groups did not differ significantly
in general mental status (MMSE, CDR global) and multiple
cognitive domains (memory, visuospatial function, language,
attention, and executive function; P > 0.05).

4www.restfmri.net/forum/DynamicBC
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As for the CSF pathological biomarkers, P-tau181 showed
significant changes in SNAP and predementia AD group
(P < 0.001). Aβ1–42 and T-tau showed significant changes only
in the predementia AD group (P < 0.001).

sALFF Result
SNAP had decreased sALFF in the left superior frontal gyrus
(SFG), and increased sALFF in the left insula when compared
to NC (Figure 1A, Table 2, Supplementary Material 4; voxel
P < 0.01, cluster P < 0.05, controlling age and gray matter
volume, GRF corrected). Predementia AD showed decreased
sALFF in the right precuneus, left inferior parietal gyrus (IPG)
while increased sALFF in the left insula than NC (Figure 1C,
Table 2, Supplementary Material 4). When directly compared
to SNAP, predementia AD showed decreased sALFF in left
middle occipital gyrus and left IPG (Figure 1E, Table 2,
Supplementary Material 4).

dALFF Variance Result
SNAP showed decreased dALFF variance in left SFG and left
paracentral lobule when compared to NC (Figure 1B, Table 2,
Supplementary Material 4; voxel P < 0.01, cluster P < 0.05,
controlling age and gray matter volume, GRF corrected), while
predementia AD group showed decreased dALFF variance in a
wide cortical area involving left calcarine, left middle cingulum,
right precuneus, right supplementary motor area, left SFG,
and right middle frontal gyrus (MFG) when compared to NC
(Figure 1D, Table 2, Supplementary Material 4). Moreover,
as directly compared with SNAP, predementia AD showed
decreased dALFF variance in the left temporal pole (Figure 1F,
Table 2, Supplementary Material 4).

Correlation Analysis
We performed partial correlation analyses between the
functional changes and cognition, as well as pathological
biomarkers to explore the physiological significance of the sALFF
and dALFF (detailed results were presented in Supplementary
Material 5). For SNAP, we found that sALFF in the insula
had a negative correlation with MMSE (r = −0.485, P = 0.009,
corrected for age, Figure 2A). As for predementia AD, sALFF
and dALFF in precuneus were associated with attention (Log-
transformed TMT-A, r = −0.390, P = 0.001; r = −0.375,
P = 0.002; corrected for age, respectively, Figures 2B,C). We did
not find a significant correlation between CSF biomarkers and
functional changes in SNAP and predementia AD.

DISCUSSION

To the best of our knowledge, this is the first study investigating
the brain functional changes in SNAP by combining the sALFF
and dALFF. Our study found distinct impairment patterns
in SNAP and predementia AD as compared to NC: SNAP
showed decreased intrinsic functional connectivity strength and
stability in SFG, while also showing increased intrinsic functional
connectivity strength in the insula, while predementia AD
showed widespread decreased functional connectivity strength
and stability involving the frontal, parietal and occipital cortex.

In the direct comparison of SNAP and predementia AD group,
predementia AD showed decreased functional connectivity
strength and stability than SNAP. Accordingly, SNAP is a
different neurodegenerative disease entity from AD, which needs
more clinical attention.

Distinct Brain Functional Impairment
Patterns in SNAP and Predementia AD
Our findings on predementia AD showed decreased sALFF in
the right precuneus and left IPG, while increased sALFF in
the left insula. These results are largely consistent with the
classic network disconnectivity theory in AD: reduced functional
connectivity in default mode network (DMN), especially the
precuneus and IPG, while salience network (SN) can be activated
as compensation to maintain cognitive integrity (Zhou et al.,
2010). Thereinto, precuneus, as the vital component of DMN, is
vulnerable to suffer amyloid deposition and functional changes
at the early AD stage and is significantly correlated with
cognitive changes (Palmqvist et al., 2017). This can also be
proved by our study which observed the significant correlation
between intrinsic brain activity within precuneus and attention
in predementia AD. Moreover, our dALFF results extensively
showed widespread decreased intrinsic brain activity stability
in predementia AD subjects, which suggested progressively
widespread functional network disruption involving DMN, SN,
and executive control network (ECN) in AD (Menon, 2011;
Zhao et al., 2019).

On the other hand, SNAP showed a quite different impaired
pattern: decreased sALFF and dALFF variance in SFG while
increased sALFF in the insula. First, the altered functional signal
in SFG suggested the decreased intrinsic brain activity strength
and stability in SFG. The decreased brain activity strength and
stability in SFG represented the specific impairment pattern of
SNAP, which differs from the compensatory function of SFG
in AD patients (Maillet and Rajah, 2013; Franzmeier et al.,
2018). Functionally, SFG works as the core structure of the ECN
and contributes to high cognitive functions including working
memory and executive function (du Boisgueheneuc et al., 2006;
Alagapan et al., 2019; Briggs et al., 2020). A recent study showed
that SNAP (A−T+) had worse frontal lobe function performance
than AD (A+T+) in the dementia population (Takenoshita et al.,
2019). Accordingly, the decreased brain functional connectivity
strength and flexibility in SFG may be the key to cognition
changes in SNAP.

Moreover, we also found increased sALFF in the insula,
suggesting the increased intrinsic brain activity strength.
Functionally, The insula plays a crucial role in SN and mediates
the interaction between large-scale functional networks during
cognitive processes (Menon and Uddin, 2010; Chen et al.,
2016). The insula involves multiple functions, including
sensory, emotional, autonomic, and cognitive function (Menon
and Uddin, 2010; Gasquoine, 2014). Previous studies found
increased functional connectivity in the SN in subjects with
neurodegenerative diseases and regarded it as a compensatory
response to decreased cognitive ability (Yassa et al., 2008;
Agosta et al., 2012; Skouras et al., 2019). Similarly, increased
cerebral blood flow in the insula has also been identified as
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FIGURE 1 | Brain areas with significant differences of sALFF and dALFF in SNAP and predementia AD. Upper panel: SNAP vs. NC; Middle panel: predementia AD
vs. NC; Lower panel: predementia AD vs. SNAP. (A,C,E) Differences of sALFF; (B,D,F) differences of dALFF [voxel P < 0.01, cluster P < 0.05, controlling for age,
gray matter volume, Gaussian random field (GRF) corrected]. Abbreviations: sALFF, static amplitude of low-frequency fluctuation; dALFF, dynamic amplitude of
low-frequency fluctuation; NC, normal control; SNAP, suspected non-Alzheimer’s pathophysiology; AD, Alzheimer’s disease.

a compensatory mechanism against pathological damage in
the preclinical phase of AD (Caroli et al., 2010; Fazlollahi
et al., 2020). Our further analysis also observed a positive
association between sALFF and MMSE in SNAP, supporting
the compensatory mechanism. Conclusively, SNAP showed
functional impairments in SFG with the compensatory

improvement of function in the insula. This is partially distinct
from the classic AD impairment pattern.

When directly compared to SNAP, predementia AD showed
significantly decreased sALFF in left middle occipital gyrus and
left IPG, and decreased dALFF variance in the left temporal pole.
This result indicated that AD had more functional impairment
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TABLE 2 | Brain areas with significant differences of sALFF and dALFF in SNAP and predementia AD.

Neuroimaging metrics Group Regions Peak MNI Cluster size Peak intensity

x y z

sALFF SNAP vs. NC Left paracentral lobule −12 −24 72 149 −4.67
Left rolandic operculum −42 −9 18 77 4.06

Predementia AD vs. NC Right precuneus 15 −69 48 203 −5.55
Left inferior parietal gyrus −24 −54 51 73 −7.67
Left Heschl’s gyrus −57 −9 9 88 4.23

Predementia AD vs. SNAP Left middle occpital gyrus −30 −69 30 89 −5.26
Left inferior parietal gyrus −24 −54 54 105 −5.92

dALFF variance SNAP vs. NC Left superior frontal gyrus −18 12 63 85 −4.53
Left paracentral lobule −12 −24 72 125 −5.04

Predementia AD vs. NC Left calcarine −6 −78 12 68 −4.93
Left middle cingulum −3 −27 33 87 −4.40
Right middle frontal gyrus 27 33 33 74 −4.94
Right precuneus 18 −69 48 159 −5.23
Right supplementary motor area 15 −12 66 81 −5.07
Left superior frontal gyrus −18 9 63 82 −5.27

Predementia AD vs. SNAP Left temporal pole: superior temporal gyrus −36 12 −27 78 −4.60

Statistical significance was set at voxel P < 0.01, cluster P < 0.05, controlling for age, gray matter volume, Gaussian random field (GRF) corrected. Abbreviations: MNI, Montreal
Neurological Institute; sALFF, static amplitude of low-frequency fluctuation; dALFF, dynamic amplitude of low-frequency fluctuation; NC, normal control; SNAP, suspected non-
Alzheimer’s pathophysiology; AD, Alzheimer’s disease. More details about the regions were put in Supplementary Material 4.

FIGURE 2 | Scatter plot diagram of the correlation between sALFF/dALFF and cognition. (A) Increased sALFF in insula correlated with worse MMSE in SNAP group
(r = −0.485, P = 0.009, corrected for age). (B,C) The sALFF/dALFF in precuneus negatively correlated with Log-transformed TMT-A finish time in predementia AD
group (r = −0.390, P = 0.001; r = −0.375, P = 0.002; corrected for age, respectively). Abbreviations: sALFF, static amplitude of low-frequency fluctuation; dALFF,
dynamic amplitude of low-frequency fluctuation; SNAP, suspected non-Alzheimer’s pathophysiology; AD, Alzheimer’s disease; MMSE, Mini-Mental State
Examination; TMT-A, Trail-Making Test Part-A.

than SNAP in the non-dementia stage, which further supports
our finding that SNAP has distinct brain functional impairment
patterns from predementia AD.

The Possible Mechanism Underlying SNAP
SNAP features functional changes in the SFG and insula.
This is quite different from the classic AD functional
change pattern: widespread functional impairments starting
from DMN while SFG is spared at the early stage. The
possible mechanism may be the distinct pathological
deposit and distribution. SNAP features abnormal Tau and
normal Amyloid, while AD here features both abnormal
Amyloid and Tau. Moreover, another study found that
entorhinal tauopathy correlated with distant frontal
hypometabolism in an Aβ independent way (Hanseeuw
et al., 2017), which might be the possible reason for
frontal functional damage in SNAP. Medial temporal
lobe tauopathy without amyloid was common in the

brain of older people, which was thought to account
for a subset of SNAP population (Crary et al., 2014). A
recent tau position emission tomography (PET) study
supported this finding and showed bilateral temporal lobe
tau deposition in SNAP (Dodich et al., 2020). As for AD,
amyloid deposition spreads widely in the neocortex early
in the pathological processes (Braak and Braak, 1991),
which may explain why AD showed widespread cortical
functional changes. Moreover, the synergistic effect of
amyloid deposition and pathologic tau may induce more
impairments than amyloid deposition or tau alone (Bloom, 2014;
He et al., 2018).

There are some limitations in our study. First, the sample size
is relatively small, which may reduce statistical power and would
not allow for a subgroup analysis between different cognitive
stages of SNAP. Further studies with larger sample sizes should
be performed. Second, SNAP is a relatively heterogeneous group,
easily resulting from other factors like cerebrovascular disease
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(CVD;Wong et al., 2019), primary age-related tauopathy (PART;
Vos et al., 2013) or argyrophilic grain disease (AGD; Lowe et al.,
2019). Further studies should consider these associated factors.
Third, as for dALFF, there lacks a unified criterion for the
window size in the sliding-window analysis process. We explored
the analysis in other window sizes to prove the stability of the
result. Moreover, a longer scan length for the dALFF might be
better to study the pattern of dynamic brain activity. At last,
we did not find significant differences in the cognitive scores
between SNAP and NC (Table 1). This might be explained by
the relatively intact cognition of the included subjects, and that
pathological changes and fMRI abnormalities always precede
cognitive changes (Sperling et al., 2011; Sheline and Raichle,
2013). Further studies with longitudinal datamay givemore hints
on the clinical implications of SNAP.

CONCLUSION

SNAP shows impaired functional activities mainly confined to
the frontal lobe and activated insula, while predementia AD
shows widespread functional activity changes involving frontal,
parietal, and occipital cortex as compared to NC. Moreover, such
decreased intrinsic brain activity strength and stability in SNAP
may explain its cognitive decline and rapid clinical progression.
Our study suggests that SNAP can be distinguished from AD
both pathologically and functionally, and more attention should
be put on SNAP.
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